
Messaging Middlewares

Mario Andrés Serruya

1 Introduction

The current document aims to perform a comparison between the different state-of-the-art
messaging oriented middleware solutions. The concerned tools will be analysed highlight-
ing multiple characteristics of interest for the implementation of the In-Memory Storage
System.

The following messaging libraries conform the ones evaluated: ZeroMQ, RabbitMQ,
Mosquitto, Apache Qpid, YAMI4, EVpath and Kafka.

The criteria followed by the analysis performed will be based in a set of points, from which
the following could be accentuated:

• Programming language in which the analysed tools have been implemented.

• Scalability.

• Availability.

• Message persistence.

• Implemented protocols in the application. A differentiation will be made between
AMQP (Advanced Message Queuing Protocol), MQTT (Message Queuing Teleme-
try Transport) and the corresponding ones to the messaging system.

• Communication patterns implemented by the tool. The following models will be
taken into account: Publish-Subscribe, Peer to Peer, ACTive (Availability for Cur-
rent Transactions), Request-Response, pipeline and survey.

• Messaging broker implementation.

1



2 Analyzed Tools

Now, a brief summary of every tool is presented describing each one of them.

2.1 ZeroMQ

ZeroMQ implements its own communication protocols. ZeroMQ constitutes a messaging
socket based library [2] which implements communication based on different channels:
TCP, PGM (Pragmatic General Multicast), IPC (Inter-Process Communication) and in-
proc communication (Intra-Process Communication). It is written in the C programming
language and lacks of messaging broker. The forthright connection of the elements in-
volved in the system supposes a reduction in maintenance costs and justifies the triviality
of an intermediate broker. Nevertheless, ZeroMQ does not provided message persistence
methods nor availability ones. In any case, facing it with a non persistent implementation
of RabbitMQ, ZeroMQ ends up performing a faster and more scalable execution, as it is
justified by Estrada and Astudillo in [2].

2.2 RabbitMQ

Facing ZeroMQ, RabbitMQ takes a stand. The corresponding middleware is developed
in the Erlang programming language. In this case, the surveyed messaging system im-
plements an intermediate broker in charge of dealing with the messages through queues.
RabbitMQ provides message persistence methods as it takes into account the possibility
of creating queues in disk. The system itself also considers redundancy and techniques in
order to offer a high availability service.

Moreover, scalability constitutes another characteristic of certain RabbitMQ implemen-
tations as Rostanski, Grochla and Seman justify in [5].

2.3 Mosquitto

Mosquitto conforms a lightweight messaging system designed to work over TCP/IP trans-
port protocol. Mosquitto implements MQTT protocol, which provides a pub-sub com-
munication pattern. In relation to message persistence, developing queues at broker level
constitutes a possibility in order to avoid message loss in case of failure [4].

The prioritization of Mosquitto as messaging tool takes place when devices limited by
poor resources are involved in the system. Nowadays, Mosquitto is mainly used in IoT
environments.

2



2.4 Apache Qpid

In opposition to Mosquitto, the middleware messaging system Apache Qpid exclusively
implements AMQP protocol. The current possibility considers message persistence through
the usage of databases (Apache Derby and Oracle Berkeley DB) and the implementation
of queues in disk. As RabbitMQ does, it is also possible to develop an implementation of
Apache Qpid in a clustered-based architecture.

The method followed by the studied tool in order to achieve high availability is based
in the maintenance of multiple brokers. Initially, clients will be connected to one of the
set. Those acting as copies will be also connected to it. In case of failure, client nodes
as well as the remaining will be redirected to an auxiliary one successfully increasing the
systems’s availability [4].

2.5 YAMI4

YAMI4 is a lightweight messaging system based in the well-known master-slave model
through which events are managed. It provides a broker and broker-less possibilities,
and it implements its own protocol. The previous resource reaches high scalability and
performance environments [4].

As the previously referenced systems, YAMI4 also supports a clustered-based implemen-
tation among an active set of brokers in order to deal with possible failures. Through
those resources, YAMI4 reaches a balanced distribution of the workload as well as high
resiliency and availability characteristics.

2.6 Kafka

Apache Kafka is a streaming distributed system whose low latency in its messaging queues
conforms a key advantage. Additionally, conducted experiments state that the number of
dealt messages by unit of time is also a factor to highlight. The justification to it remains
behind the sacrifice Kafka performs in relation to reliability in exchange of performance
[3]. Besides, Kafka provides pub-sub messaging as well as Point-to-point.

From a persistent viewpoint, Kafka provides a solution to avoid data leaks due to failures.
The previous method is based in the usage of a persistent file system.

3



2.7 EVpath

EVpath constitutes an event driven middleware system that acts as a transport layer. It
was specifically designed to ease the development of overlapped networks. EVpath itself
does not implement a communication method, but it provides the key components of the
development of different communication paradigms.

EVpath holds up a high performance in the execution of applications through its stones
system, those correspond to the basic tools which implement each communication paradigm.
The previous capability allows answering to higher workloads [1].

3 Comparison

Table 1

Middleware/
Characteristics

Mosquitto Kafka EVpath

Development
language

C Scala C

Relase year 2009 2011 2009
Implements

Broker
Yes Yes No

Supported
Messaging
Patterns

Exclusively
Pub-Sub

Pub-Sub,
Point to Point

Implementation
based

Message
persistance

Yes Yes No

Lightweight Yes Yes Yes
Considered
protocols

MQTT,
Websocket

Kafka -

Availability
Methods

Tries to achieve it
linking brokers

Yes Yes

4



Table 2

Middleware/
Characteristics

ZeroMQ RabbitMQ Apache Qpid YAMI4

Development
language

C++ Erlang Java, C++ C++, Objective C

Release year 2007 2007 2005 2010
Implements

Broker
No Yes Yes

Could be used
with or without one

Considered
protocols

Request-Reply,
Pub-Sub,
workload

distribution

Request-Reply,
Pub-Sub

Request-Reply,
Pub-Sub

Request-Reply,
Pub-Sub

Message
persistance

No Yes Yes No

Lightweight Yes No Yes Yes

Considered
protocols

ZMTP

AMQP, MQTT, REST,
STOMP,

STOMP over websockets,
XMPP over getaway

AMQP
YAMI4 - a WIRE

level protocol

Availability
Methods

No Yes Yes Yes

References

[1] Greg Eisenhauer, Hasan Abbasi, Matthew Wolf, and Karsten Schwan. Event-based
Systems: Opportunities and Challenges at Exascale. 2009. https://dl.acm.org/

citation.cfm?id=1619261.

[2] Nicolás Estrada and Hernán Astudillo. Comparing scalability of message queue system:
ZeroMQ vs RabbitMQ. 2015. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=7360036.

[3] Vineet John and Xia Liu. A Survey of Distributed Message Broker Queues. 2017.
https://arxiv.org/pdf/1704.00411.pdf.

[4] Suman Patro, Manish Potey, and Amit Golhani. Comparative Study of Middleware
solutions For Control and Monitoring systems. 2017. https://ieeexplore.ieee.

org/stamp/stamp.jsp?tp=&arnumber=8117808.

[5] Maciej Rostanski, Krzysztof Grochla, and Aleksander Seman. Evaluation of highly
available and fault-tolerant middleware clustered architectures using RabbitMQ. 2014.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6933108.

5

https://dl.acm.org/citation.cfm?id=1619261
https://dl.acm.org/citation.cfm?id=1619261
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7360036
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7360036
https://arxiv.org/pdf/1704.00411.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8117808
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8117808
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6933108

	Introduction
	Analyzed Tools
	ZeroMQ
	RabbitMQ
	Mosquitto
	Apache Qpid
	YAMI4
	Kafka
	EVpath

	Comparison

